137 research outputs found

    Vacuum Energy as Spectral Geometry

    No full text
    Quantum vacuum energy (Casimir energy) is reviewed for a mathematical audience as a topic in spectral theory. Then some one-dimensional systems are solved exactly, in terms of closed classical paths and periodic orbits. The relations among local spectral densities, energy densities, global eigenvalue densities, and total energies are demonstrated. This material provides background and motivation for the treatment of higher-dimensional systems (self-adjoint second-order partial differential operators) by semiclassical approximation and other methods

    Quantum Stability of Accelerated Black Holes

    Get PDF
    We study quantum aspects of the accelerated black holes in some detail. Explicitly shown is the fact that a uniform acceleration stabilizes certain charged black holes against the well-known thermal evaporation. Furthermore, a close inspection of the geometry reveals that this is possible only for near-extremal black holes and that most nonextremal varieties continue to evaporate with a modified spectrum under the acceleration. We also introduce a two-dimensional toy model where the energy-momentum flow is easily obtained for general accelerations, and find the behavior to be in accordance with the four-dimensional results. After a brief comparison to the classical system of a uniformly accelerated charge, we close by pointing out the importance of this result in the WKB expansion of the black hole pair-creation rate.Comment: LaTeX, 22 pages, 5 uuencoded figures (minor errors corrected, more discussions on the case with black holes formed by gravitational collapse.

    Four dimensional R^4 superinvariants through gauge completion

    Full text link
    We fully compute the N=1 supersymmetrization of the fourth power of the Weyl tensor in d=4 x-space with the auxiliary fields. In a previous paper, we showed that their elimination requires an infinite number of terms; we explicitely compute those terms to order \kappa^4 (three loop). We also write, in superspace notation, all the possible N=1 actions, in four dimensions, that contain pure R^4 terms (with coupling constants). We explicitely write these actions in terms of the \theta components of the chiral density \epsilon and the supergravity superfields R, G_m, W_{ABC}. Using the method of gauge completion, we compute the necessary \theta components which allow us to write these actions in x-space. We discuss under which circumstances can these extra R^4 correction terms be reabsorbed in the pure supergravity action, and their relevance to the quantum supergravity/string theory effective actions.Comment: 20 pages, no figures. Sec. 3 clarified; typos correcte

    Comment on: "The Casimir force on a piston in the spacetime with extra compactified dimensions" [Phys. Lett. B 668 (2008) 72]

    Get PDF
    We offer a clarification of the significance of the indicated paper of H. Cheng. Cheng's conclusions about the attractive nature of Casimir forces between parallel plates are valid beyond the particular model in which he derived them; they are likely to be relevant to other recent literature on the effects of hidden dimensions on Casimir forces.Comment: 6 pages, 1 figur

    On the Particle Definition in the presence of Black Holes

    Full text link
    A canonical particle definition via the diagonalisation of the Hamiltonian for a quantum field theory in specific curved space-times is presented. Within the provided approach radial ingoing or outgoing Minkowski particles do not exist. An application of this formalism to the Rindler metric recovers the well-known Unruh effect. For the situation of a black hole the Hamiltonian splits up into two independent parts accounting for the interior and the exterior domain, respectively. It turns out that a reasonable particle definition may be accomplished for the outside region only. The Hamiltonian of the field inside the black hole is unbounded from above and below and hence possesses no ground state. The corresponding equation of motion displays a linear global instability. Possible consequences of this instability are discussed and its relations to the sonic analogues of black holes are addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.Comment: 44 pages, LaTeX, no figures, accepted for publication in Phys. Rev.

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    Cosmological backreaction of a quantized massless scalar field

    Full text link
    We consider the backreaction problem of a quantized minimally coupled massless scalar field in cosmology. The adiabatically regularized stress-energy tensor in a general Friedmann-Robertson-Walker background is approximately evaluated by using the fact that subhorizon modes evolve adiabatically and superhorizon modes are frozen. The vacuum energy density is verified to obey a new first order differential equation depending on a dimensionless parameter of order unity, which calibrates subhorizon/superhorizon division. We check the validity of the approximation by calculating the corresponding vacuum energy densities in fixed backgrounds, which are shown to agree with the known results in de Sitter space and space-times undergoing power law expansions. We then apply our findings to slow-roll inflationary models. Although backreaction effects are found to be negligible during the near exponential expansion, the vacuum energy density generated during this period might be important at later stages since it decreases slower than radiation or dust.Comment: 20 pages, 2 figures, v2: comments and a reference added, to appear in JCA

    The gravitational path integral and trace of the diffeomorphisms

    Full text link
    I give a resolution of the conformal mode divergence in the Euclidean gravitational path-integral by isolating the trace of the diffeomorphisms and its contribution to the Faddeev-Popov measure.Comment: 20 pgs

    The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes

    Get PDF
    Quantum fields propagating on a curved spacetime are investigated in terms of microlocal analysis. We discuss a condition on the wave front set for the corresponding n-point distributions, called ``microlocal spectrum condition'' (μ\muSC). On Minkowski space, this condition is satisfied as a consequence of the usual spectrum condition. Based on Radzikowski's determination of the wave front set of the two-point function of a free scalar field, satisfying the Hadamard condition in the Kay and Wald sense, we construct in the second part of this paper all Wick polynomials including the energy-momentum tensor for this field as operator valued distributions on the manifold and prove that they satisfy our microlocal spectrum condition.Comment: 21 pages, AMS-LaTeX, 2 figures appended as Postscript file

    Quantum corrections to the noncommutative kink

    Full text link
    We calculate quantum corrections to the mass of noncommutative phi^4 kink in (1+1) dimensions for intermediate and large values of the noncommutativity parameter theta. All one-loop divergences are removed by a mass renormalization (which is different from the one required in the topologically trivial sector). For large theta quantum corrections to the mass grow linearly with theta signaling about possible break down of the perturbative expansion.Comment: 18 pages, v2: minor change
    corecore